API Reference#

spe.bagging#

ParametricBaggingRegressor([estimator, ...])

A Bagging regressor.

spe.estimators#

cp_adaptive_smoother(model, X, y, tr_idx[, ...])

Computes Generalized Mallows's Cp for adaptive linear smoothers.

cp_arbitrary(model, X, y, tr_idx[, Chol_y, ...])

Computes Generalized Mallows's Cp for arbitrary models.

cp_bagged(model, X, y, tr_idx[, Chol_y, ...])

Computes Generalized Mallows's Cp for bagged models.

cp_smoother(model, X, y, tr_idx[, Chol_y, ...])

Computes Generalized Mallows's Cp for any linear model and dependent train and test set.

spe.forest#

ParametricRandomForestRegressor([...])

A random forest regressor that can use parametric bootstraps.

spe.relaxed_lasso#

RelaxedLasso([lambd, fit_intercept, ...])

Relaxed lasso linear regression model.

spe.smoothers#

BSplineRegressor([n_knots, degree, knots, ...])

BSpline linear regression model.

LinearRegression(*[, fit_intercept, copy_X, ...])

spe.tree#

AdaptiveLinearSmoother()

ABC class all adaptive linear smoother models should inherit from.

Tree(*[, criterion, splitter, max_depth, ...])

A decision tree regressor.