[1]:
import numpy as np
from sklearn.gaussian_process.kernels import Matern, RBF
import plotly
from docs.mse_estimator import ErrorComparer
from docs.data_generation import gen_rbf_X, gen_matern_X, gen_cov_mat
from docs.plotting_utils import gen_model_barplots
from spe.relaxed_lasso import RelaxedLasso
from spe.tree import Tree
from spe.estimators import kfoldcv, kmeanscv, new_y_est, cp_adaptive_smoother
[2]:
np.random.seed(1)
Adaptive Linear Smoothers#
Here we demonstrate the effectiveness of spe.estimators.cp_adaptive_smoother
to estimate MSE on simulated data.
[3]:
## number of realizations to run
niter = 100
## data generation parameters
gsize=10
n=10**2
p=200
s=5
delta = 0.75
snr = 0.4
tr_frac = .5
noise_kernel = 'matern'
noise_length_scale = 1.
noise_nu = .5
X_kernel = 'matern'
X_length_scale = 5.
X_nu = 2.5
## ErrorComparer parameters
alpha = .05
nboot = 100
k = 5
max_depth = 3
lambd = .31
models = [RelaxedLasso(lambd=lambd), Tree(max_depth=max_depth)]
ests = [
new_y_est,
new_y_est,
cp_adaptive_smoother,
kfoldcv,
kmeanscv
]
est_kwargs = [
{'alpha': None,
'full_refit': False},
{'alpha': alpha,
'full_refit': False},
{'alpha': alpha,
'use_trace_corr': False,
'full_refit': False,
'nboot': nboot},
{'k': k},
{'k': k}
]
## plot parameters
model_names = ["Relaxed Lasso", "Decision Tree"]
est_names = ["GenCp", "KFCV", "SPCV"]
[4]:
err_cmp = ErrorComparer()
[5]:
nx = ny = int(np.sqrt(n))
xs = np.linspace(0, gsize, nx)
ys = np.linspace(0, gsize, ny)
c_x, c_y = np.meshgrid(xs, ys)
c_x = c_x.flatten()
c_y = c_y.flatten()
coord = np.stack([c_x, c_y]).T
[6]:
if noise_kernel == 'rbf':
Sigma_t = gen_cov_mat(c_x, c_y, RBF(length_scale=noise_length_scale))
elif noise_kernel == 'matern':
Sigma_t = gen_cov_mat(c_x, c_y, Matern(length_scale=noise_length_scale, nu=noise_nu))
else:
Sigma_t = np.eye(n)
Cov_y_ystar = delta*Sigma_t
Sigma_t = delta*Sigma_t + (1-delta)*np.eye(n)
if noise_kernel == 'rbf' or noise_kernel == 'matern':
Chol_y = np.linalg.cholesky(Sigma_t)
else:
Chol_y = np.eye(n)
[7]:
if X_kernel == 'rbf':
X = gen_rbf_X(c_x, c_y, p)
elif X_kernel == 'matern':
X = gen_matern_X(c_x, c_y, p, length_scale=X_length_scale, nu=X_nu)
else:
X = np.random.randn(n,p)
beta = np.zeros(p)
idx = np.random.choice(p,size=s,replace=False)
beta[idx] = np.random.uniform(-1,1,size=s)
[8]:
tr_idx = np.ones(n, dtype=bool)
Simulate \(Y, Y^* \overset{iid}{\sim} \mathcal{N}(\mu, \Sigma_Y)\)#
[9]:
model_errs = []
for model in models:
errs = err_cmp.compare(
model,
ests,
est_kwargs,
niter=niter,
n=n,
p=p,
s=s,
snr=snr,
X=X,
beta=beta,
coord=coord,
Chol_y=Chol_y,
Chol_ystar=Chol_y,
Cov_y_ystar=None,
tr_idx=tr_idx,
fair=False,
est_sigma=False,
)
model_errs.append(errs)
0%| | 0/100 [00:00<?, ?it/s]
100%|██████████| 100/100 [00:32<00:00, 3.07it/s]
100%|██████████| 100/100 [01:10<00:00, 1.41it/s]
[10]:
plotly.offline.init_notebook_mode()
fig = gen_model_barplots(
model_errs,
model_names,
est_names,
title="Adaptive Linear Smoothers: No Shared Noise",
has_elev_err=True,
)
fig.show()
Simulate \(\begin{pmatrix} Y \\ Y^* \end{pmatrix} \sim \mathcal{N}\left(\begin{pmatrix} \mu \\ \mu \end{pmatrix}, \begin{pmatrix}\Sigma_Y & \Sigma_{Y, Y^*} \\ \Sigma_{Y^*, Y} & \Sigma_{Y} \end{pmatrix}\right)\)#
[11]:
corr_model_errs = []
for model in models:
errs = err_cmp.compare(
model,
ests,
est_kwargs,
niter=niter,
n=n,
p=p,
s=s,
snr=snr,
X=X,
beta=beta,
coord=coord,
Chol_y=Chol_y,
Chol_ystar=Chol_y,
Cov_y_ystar=Cov_y_ystar,
tr_idx=tr_idx,
fair=False,
est_sigma=False,
)
corr_model_errs.append(errs)
100%|██████████| 100/100 [00:46<00:00, 2.14it/s]
100%|██████████| 100/100 [01:19<00:00, 1.26it/s]
[12]:
corr_fig = gen_model_barplots(
corr_model_errs,
model_names,
est_names,
title="Adaptive Linear Smoothers: Shared Structured Noise",
has_elev_err=True
)
corr_fig.show()
[ ]: